
In this assignment, you will

1. derive both forward and backward propagation,
2. implement a neural network from scratch, and
3. run experiments with your model.

Collaboration

You are allowed to work in a team of at most three on the coding part(Q2), but you must run the experiments and answer written questions
independently.

Instructions

General Instructions

In an ipython notebook, to run code in a cell or to render Markdown+LaTeX press Ctrl+Enter or [>|] (like "play") button above. To edit any
code or text cell (double) click on its content. To change cell type, choose "Markdown" or "Code" in the drop-down menu above.

Most of the written questions are followed up a cell for you enter your answers. Please enter your answers in a new line below the Answer
mark. If you do not see such cell, please insert one by yourself. Your answers and the questions should not be in the same cell.

Instructions on Math

Some questions require you to enter math expressions. To enter your solutions, put down your derivations into the corresponding cells below
using LaTeX. Show all steps when proving statements. If you are not familiar with LaTeX, you should look at some tutorials and at the examples
listed below between $..$. The OEIS website can also be helpful.

Alternatively, you can scan your work from paper and insert the image(s) in a text cell.

Submission

Once you are ready, save the note book as PDF �le (File -> Print -> Save as PDF) and submit via Gradescope.

CS640 Homework 2: Neural Network

Please write your name in the next cell. If you are collaborating with someone, please list their names as well.

Q0: Name(s)

Answer

Consider a simple neural network with three layers: an input layer, a hidden layer, and an output layer.

Let and be the layers' weight matrices and let and be their biases. For convention, suppose that is the weight between
the th node in the previous layer and the th node in the current one.

Additionally, the activation function for both layers is the sigmoid function . Let and be the outputs of the two layers

before activation, and let and .

Lastly, we choose the L2 loss as the loss function.

Q1: Written Problems

w(1) w(2) b(1) b(2) wij

i j

σ(x) = 1
1+e−x z(1) z(2)

= σ()a(1) z(1) = σ()a(2) z(2)

L(,) = (−ytrue ypredict
1
2

ytrue ypredict)
2

Suppose that

, ; and

, .

Q1.1: Forward Pass

= []w(1) 0.4

0.3

0.6

0.9

0.2

0.5
= [1, 1, 1]b(1)

=w(2)
⎡

⎣
⎢

0.2

0.2

0.8

⎤

⎦
⎥ = [0.5]b(2)

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMarkdown
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLaTeX
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Foeis.org%2Fwiki%2FList_of_LaTeX_mathematical_symbols

If the input is , what is the network output? Show your calculation steps and round your answer to 4 decimals.= []a(0) 1

1

[Answer]

After plugging in numbers and rounding, the �nal answer is 0.8221.

= +z(1) w(1)T
a(0) b(1)T

= σ()a(1) z(1)

= +z(2) w(2)T
a(1) b(2)T

= σ()a(2) z(2)

Show code

Use the chain rule to derive the expressions of the following gradients:

1. and

2. and

Your �nal answers should only include the variables appeared in the question.

Hint #1: Begin by writing down the chain of partial derivatives, and then plug in prede�ned variables.

Hint #2: While plugging in prede�ned variables, be careful about the dimensions and orientation. You can �rst write down the expressions in the
element level and then �gure out the matrix form.

Hint #3: The derivative of is .

Hint #4: The LaTex code for dot product and element-wise product: and .

Q1.2: Backward Propagation

∂L

∂w(2)

∂L

∂b(2)

∂L

∂w(1)

∂L

∂b(1)

σ(x) σ(x)(1 − σ(x))

⋅ ⊙

[Answer]

Second layer:

Then, in matrix form

Let

First layer:

∂L

∂w
(2)
i

= ⋅ ⋅
∂L

∂a(2)

∂a(2)

∂z(2)

∂z(2)

∂w
(2)
i

= (,) ⋅ () ⋅L′ ytrue a(2) f ′
2 z(2) a

(1)
i

= (−)σ()(1 − σ())a(2) ytrue z(2) z(2) a
(1)
i

∂L

∂b(2)
= ⋅ ⋅

∂L

∂a(2)

∂a(2)

∂z(2)

∂z(2)

∂b(2)

= (,) ⋅ () ⋅ 1L′ ytrue a(2) f ′
2 z(2)

= (−)σ()(1 − σ())a(2) ytrue z(2) z(2)

= ⋅ ((−) ⊙ (σ()(1 − σ())) .
∂L

∂w(2)
a(1) a(2) ytrue z(2) z(2))T

= ((−) ⊙ (σ()(1 − σ())) .
∂L

∂b(2)
a(2) ytrue z(2) z(2))T

η = (−) ⊙ (σ()(1 − σ())).a(2) ytrue z(2) z(2)

∂L

∂w
(1)
ij

= ⋅ ⋅ ⋅ ⋅
∂L

∂a(2)

∂a(2)

∂z(2)

∂z(2)

∂a
(1)
j

∂a
(1)
j

∂z
(1)
j

∂z
(1)
j

∂w
(1)
ij

= (,) ⋅ () ⋅ ⋅ () ⋅L′ ytrue a(2) f ′
2 z(2) w

(2)
j f ′

1 z(1) a
(0)
i

Then, in matrix form

∂L

∂w
(1)
ij

= ⋅ ⋅ ⋅ ⋅
∂L

∂a(2)

∂a(2)

∂z(2)

∂z(2)

∂a
(1)
j

∂a
(1)
j

∂z
(1)
j

∂z
(1)
j

∂w
(1)
ij

= (,) ⋅ () ⋅ ⋅ ()L′ ytrue a(2) f ′
2 z(2) w

(2)
j f ′

1 z(1)

∂L

∂w(1)
= ⋅ (⋅ η ⊙ ()a(0) w(2) f ′

1 z(1))T

= ⋅ (⋅ η ⊙ (σ() ⊙ (1 − σ()))a(0) w(2) z(1) z(1))T

∂L

∂b(1)
= (⋅ η ⊙ ()w(2) f ′

1 z(1))T

= (⋅ η ⊙ (σ() ⊙ (1 − σ()))w(2) z(1) z(1))T

In this part, you need to construct a neural network model (almost) from scratch, run experiments, and write reports. We provide a script of
skeleton code as well as three datasets.

Your tasks are the following.

1. Build your network model following the instruction.
2. Run experiments and produce results.
3. Interpret and discuss your results.

Q2: Implementation

The packages that have been imported in the following block should be su�cient for this assignment, but you are free to add more if necessary.
However, keep in mind that you should not import and use any neural network package. If you have concern about an addition package, please
contact us via Piazza.

Q2.1: Import Packages

 1
 2
 3
 4
 5
 6

import numpy as np
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
import pandas

Complete the following functions. The ones starting with a "d" are the derivatives of the corresponding functions.

De�nitions:

1. sigmoid:

2. softmax: softmax(x)

3. L2 loss:
4. cross entropy loss:

Q2.2: De�ne Activation and Loss Functions

σ(x) = 1
1+e−x

= exi

∑
i

exi

L(,) = (−ytrue ypredict
1
2

ytrue ypredict)
2

L(,) = − [i] ⋅ log [i]ytrue ypredict ∑i ytrue ypredict

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17

def sigmoid(x):
 pass

def d_sigmoid(x):
 pass

def softmax(x):
 pass

def l2_loss(YTrue, YPredict):
 pass

def d_l2_loss(YTrue, YPredict):
 pass

def cross_entropy_loss(YTrue, YPredict):
 pass

 18
 19
 20

def d_cross_entropy_softmax(YTrue, YPredict):
 pass

Complete the initialize_weights function, which initializes the weights and biases with small random values. The __init__ function should
be left as it is.

Hint: It is recommended that you de�ne weights and bias separately for clarity.

Q2.3: De�ne the Layer Class

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

class Layer:
 def __init__(self, n_input, n_output, bias = True):
 self.n_input = n_input
 self.n_output = n_output
 self.bias = bias
 self.initialize_weights()

 def initialize_weights(self):
 """
 Initializes the weights and biases with small random values.
 """
 rng = np.random.default_rng(2) # for re-producibility, do not change this
 ########################## start of your code ##########################

 ########################## end of your code ############################

Complete the fit and predict functions as instructed in the comments. Do not change their input arguments, but you are free to add
functions as necessary. The __init__ function should be left as it is.

Hint #1: This is the heaviest part of this assignment. We recommend you to �rst go over the math carefully before starting this part.

Hint #2: You are strongly encouraged to use numpy for matrix operations. When doing multiplication, please be careful about the dimensions,
as well as the difference between the "*" operator, numpy's multiply function, and numpy's dot function.

Q2.4: De�ne the Network Class

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35

class Network:
 def __init__(self, layers, activation_list, d_activation_list, loss_function, d_loss_function):
 self.layers = layers
 self.activation_list = activation_list
 self.d_activation_list = d_activation_list
 self.loss_function = loss_function
 self.d_loss_function = d_loss_function

 def fit(self, X, Y, learning_rate, reg_lambda):
 """
 This is the training function. It should return the average loss over samples.
 """
 loss, n_sample = 0, len(X)

 ########################## start of your code ##########################
 # first, initialize zero gradients

 # next, for each sample,
 # 1. compute outputs from each layer (via some forward function);
 # 2. compute and accumulate the loss (via the self.loss_function); and
 # 3. compute and accumulate the gradients (via some backprog function)

 # then, update weights and biases using the corresponding gradients
 # don't forget to take the mean before updating

 ########################## end of your code ############################

 # lastly, return the average loss
 return loss / n_sample

 def predict(self, X, threshold = None):
 """
 This function predicts the labels for samples in X. The parameter threshold

 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48

 is used when the labels are binary and there is only one node in the final
 layer of the network.
 """
 YPredict = []

 ######################### start of your code ###########################
 # for each sample, run a forward pass and append the predicted label to YPredict

 ######################### end of your code #############################

 # return as a numpy array
 return np.array(YPredict)

Use the following example code to test your model with some simple data.

Make sure to produce a decreasing loss curve here before moving on.

Q2.5: Test Model

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

from sklearn import datasets

X, Y = datasets.load_iris(return_X_y = True)
X, Y = X[:100, :2], Y[:100]
rng = np.random.default_rng(2)
indices = [i for i in range(100)]
rng.shuffle(indices)
X, Y = X[indices], Y[indices]

assemble your model
layers = [Layer(2, 4), Layer(4, 1)]
model = Network(layers, [sigmoid, sigmoid], [d_sigmoid, d_sigmoid], l2_loss, d_l2_loss)

specify training parameters
epochs = 100
learning_rate = 1e-2
reg_lambda = 0

capture the loss values during training
loss = np.zeros(epochs)

start training
for epoch in range(epochs):
 loss[epoch] = model.fit(X, Y, learning_rate, reg_lambda)

plot the losses, the curve should be decreasing
plt.plot([i for i in range(epochs)], loss)
plt.title("Training Loss")
plt.xlabel("Epoch")
plt.show()

In this section, you will implement experiments with dataset1. There are two subsets in this dataset: linearly and nonlinearly.

For each subset, your tasks are the following:

1. Split it using Strati�edKFold with K = 5. Make sure the splitting is random (preferrably seeded).
2. For each split, perform training and test with an instance of your model.
3. Compute the confusion matrix. The values should be accumulated across all folds.
4. Compute the performance results: accuracy, precision, recall, and F1. The values should the average across all folds.

Please show the results clearly (one item at a time).

Q3: Real Data Experiments with Dataset 1

Q3.1: LinearXY

 1 # write your code in this block

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fscikit-learn.org%2Fstable%2Fmodules%2Fgenerated%2Fsklearn.model_selection.StratifiedKFold.html

Q3.2: NonLinearXY

 1 # write your code in this block

Dataset2 has been split into training and test subsets, so you only need to load them accordingly.

In this part, you need to try out different model parameter values and observe how they affect the results.

For each of the questions below, show performance results as four lists. An eample output is the following:

accuracy scores: [1., 1., 1., 1.]

precision scores: [1., 1., 1., 1.]

recall scores: [1., 1., 1., 1.]

f1 scores: [1., 1., 1., 1.]

Use the following function to obtain one-hot encoded labels. Note that the returned labels are by default row vectors.

Q4: Real Data Experiments with Dataset 2

 1
 2
 3
 4
 5
 6

from sklearn.preprocessing import OneHotEncoder

Simply pass the labels as two 1D arrays.
def one_hot_encode(YTrain, YTest):
 encoder = OneHotEncoder(sparse_output = False)
 return encoder.fit_transform(YTrain.reshape(-1, 1)), encoder.transform(YTest.reshape(-1, 1))

Experiment with at least 5 different choices of total epochs.

Q4.1: Epochs

 1 # write your code in this block

Experiment with at least 5 different choices of learning rates.

Q4.2: Learning Rate

 1 # write your code in this block

Experiment with at least 3 different choices of regularization parameter.

Q4.3: Regularization Parameter

 1 # write your code in this block

Experiment with at least 5 different choices of network structure. This includes number of layers and number of nodes in each layer.

Hint: Try experimenting with increasing complexity.

Q4.4: Network Structure

 1 # write your code in this block

For each question below, provide a short answer. You can cite your code if needed.

Q5: Follow-up Questions

Q5.1: Brie�y describe the work�ow of how your model classi�es the data.

[Answer]

Q5.2: In your own words, explain how the forward propagation in your model works.

[Answer]

Q5.3: In your own words, explain how the backward propagation in your model works.

[Answer]

Q5.4: In theory, how do the total number of epochs, the learning rate, and the regularization parameter impact the
performance of model? Does any of the theoretical impact actually happen in your result? If so, point them out.

[Answer]

Epochs When the number is too small, the model doesn't enough and hence it cannot predict the test data well. When the number is too large,
the model tends to over�t the training data, also resulting in poor performance on the test data.

Learning Rate Learning rate is the step size of the gradient descent. Therefore, if the value is too small, it may take the model longer to �t the
data. On the other hand, if the value is too large, the model may "overstep" and hence cannot reach the optimal point.

Regularization Parameter The role of regularization is to prevent over�tting. If the parameter is too small, then it cannot contribute enough to
the weight update and hence may not be able to prevent over�tting. On the other hand, if the value is too large, it may contribute too much to
the update, which prevents the model from learning.

